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Abstract-Among the various numerical procedures used in fracture analysis the modified crack
closure integral method given by Rybicki and Kanninen is a numerically very effective procedure
in combination with constant strain elements. Based on an analytical energy consideration for a
thermally stressed specimen under plain strain conditions it will be shown, that the method can be
extended for the application with higher order finite elements, keeping its original advantages. By
comparing results calculated with a global energy and the J-integral method it will be shown, that
the improved modified crack closure integral method computes the energy release rate with extending
crack length with very good efficiency and accuracy.

I. INTRODUCTION

Among the various numerical procedures used in fracture analysis, such as extrapolation
methods[I], superposition methods[2] and energy methods[3-7] the modified crack closure
integral method given by Rybicki and Kanninen[8] is a very straightforward and effective
numerical procedure. This procedure delivers simultaneously the separated energy release
rated G,{a), i = I, II, III for mixed-mode crack tip conditions from just one finite element
analysis per crack length a.

Using "Constant Strain Elements" (CSE) the method has been applied in Ref. [8] to
different fracture problems involving coplanar crack extension and in all cases the numerical
results were in good agreement with reference solutions. But different from general experi­
ence with higher order finite elements[lO] Rybicki and Kanninen have reported in Ref. [8]
on a considerable decrease of accuracy when their method has been used in combination
with higher order elements. To investigate this irregular effect in detail, the specially
supported specimen of Fig. 1 will be considered, for which we can deduce a very useful
analytical reference value for the overall strain energy of the uncracked specimen generated
by a homogeneous temperature decrease of the strip.

2. GLOBAL ENERGY METHODS

2.1. The uncracked specimen
If the uncracked strip of finite width illustrated in Fig. 1 is subjected to a homogeneous

temperature decrease !!T = const < 0 it can be shown that the generated elastic strain
energy U = uy·: (a = 0) can be separated into two uncoupled terms UZ (a = 0) due to the
suppressed displacements in the z-direction (causing plane strain conditions) and UY (a = 0)
due to the suppressed displacements in the y-direction. Starting from the constitutive
equations of linear thermoelasticity[9] with !!T = const < 0 and 6:: = 6V \' = 0 according to
the suppressed displacements in the y- and z-directions and (1xx = 0 due to the unrestricted
displacements in the x-direction one can find for the uncracked thermally stressed tension
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Fig. I. Thermally stressed specimen (AT = - 100°C; material: AI; dimensions: w = 15 mm,
h = 13 mm, t = 1 mm).

strip of Fig. I (with E Young's modulus, y Poisson's ratio, IX linear coefficient of thermal
expansion)

l+v
(I)Cn = -1- IXIJ.T,

-y

EaIJ.T
(2)ayy = - -1--

-y

and

EIXIJ.T
(3)azz = - -1--'

-y

Substituting these results into the general 3D-formula for the elastic strain energy:

(4)

one gets

(5)

due to the temperature change IJ.T and the suppressed displacements in the y- and z­
directions. Using the 2D-form of eqn (4) for plane strain conditions one finds

due to the suppressed displacements in the y-direction alone and

UZ(a = 0) = Ur'=(a = 0) - UY(a = 0),

(6)

(7)



resulting in
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UZ(a = 0) = ~E(iX6T)2 V.
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(8)

On the other hand for both separated parts of the completely cracked specimen (a = w)
it holds according to eqn (4).

U(a = w) = {-!E(iX6T)2~J = U=(a = w)

and with reference to eqn (6)

Upl.Slrain(a = w) = 0 = UY(a = w).

(9)

(10)

From comparing eqns (8) and (9) it finally can be concluded that only the separated and
uncoupled part U)' (a = 0) of the elastic strain energy generated by the homogeneous
temperature decrease 6T can be released from the specimen to the crack. Consequently,
with UY (a = 0) an analytical reference value is given, for that part of the elastic strain
energy that may initiate and propagate the crack until complete separation of the specimen.

2.2. The cracked specimen
For the cracked specimen of Fig. 1 no analytical solution of the corresponding mixed

boundary value problem is available. But it has been shown in Ref. [13] that on the basis
of the following relations

and

O)'(a) = -!r;(a)K(a)re(a)

G(a) = _ lim 0)'(a+6a)- 0.1" (a) = _ dOY(a)
'\11-0 16a 1 da '

(11 )

(12)

the global energy release rate G(a) with extending crack length a can be computed with
very good accuracy, if sophisticated procedures are used for the required numerical differ­
entiation dOY/da (global energy method-EN). In eqn (11) r.(a) = ria)-ro(a = 0) denotes
the global vector of the effective nodal point displacements (ra(a) actual displacements,
ro(a = 0) unrestricted displacements due to 6T =const, r T transposed vector) and K(a) is
the global stiffness matrix.

In Fig. 3 the decrease of the elastic strain energy OY(a) of the thermally stressed
specimen (6T = -100°C) is plotted vs crack length, as calculated for the two different LSE­
net topologies of Figs. 2(a) and (b).

It can be seen that for the fine net, F. and the superfine net, S, the plots nearly coincide
and that for a = w the specimen still contains a small amount of strain energy 0R(a = w)

as long as the last pair of nodal points is still connected. In Fig. 4 the corresponding energy
release rates G(a), [here identical to G1(a)] calculated from eqn (12) are plotted vs crack
length ratio a/w. For the net, F and S one also gets nearly coinciding graphs (GI-EN-F
and S) showing increasing G.(a)-values up to a/w ~ 0.5 and a nearly stationary value for
0.5 ~ a/w ~ 0.9. Interesting is the result, that with the superfine net, S, G.(a) keeps the
stationary value till higher ratios a/w during crack extension towards the free surface.

On the basis of the following relations

v fa=M'
U:~r(a = 0) ,g, O)'(a = w) = 2t JII= 0 G(a) da (13)
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Fig. 2. Finite element nets of the specimen (one quarter) used for the ASKA calculations of G(a).
Triangular 6·node "Linear Strain Elements" (LSE) : (a) fine net, F, 300 elements, 649 nodal points;

(b) superfine net. S, 1176 elements, 2449 nodal points.

U;~f(a = 0) = UI'(a = 0) - D~(a = w), (14)

a quantitative measure of accuracy can be established for the numerical methods used to
calculate the energy release rates with extending crack length[ll-13]. Equation (13) states
that the elastic strain energy Ol'(a = w) which the specimen releases to the crack until
complete separation (a = w) must be equal to the separated energy term U'(a = 0) of the
uncracked specimen reduced by the rest energy DR(a = w), Referring to eqn (13) we now
can compute by

,1 _ Ol(a = w)- U;~f(a = 0)
rei - U;~f(a = 0) ,

(15)

the relative overall difference of these values, For the fine net, F, this results in ,1rcl = - 1.4%
and for the superfine net, S, one gets ,1,el = - 0.02% which indeed confirms this plot as a
reference curve for the following investigations of some local energy methods for the
calculation of G(a) with increasing crack length.

3. LOCAL ENERGY METHODS

3.1. Crack closure intewal and modified crack closure integral calculations
Referring to Fig. 5 and its notations one can write according to lrwin[14] the following

E 200,----,-----,--..,.---,-----r--...,...--.,.--,
~ ~ EN-S
,., '" EN-F
I::>
i;; 160Fv~~_:_-+--+---l---+-..:.+--'=;ErN-..:.M.:......_+__l
~ ,.~

.~ 120j---+-.-+,----=.::"""~-j--_+--_+_--+__l
~ ""',-

eOj---j·---j---l---l--=-....----j.---l--1
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40j---+--+---j---j--_+--_+_-.::I!~+__l

~
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4 6 10 12 14
eroc k length a [mml

Fig. 3. Elastic strain energy of the cracked specimen vs crack length calculated with the global
energy method. EN.
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Fig. 4. Energy release rate of the cracked specimen vs crack length ratio calculated with the global
energy method, EN.

well-known crack closure integral relation

dUY(a) 21X~6Q I
- -d- = G(a) = lim~ -2(1yy(r = x, cp = O)uy(r = fJa-x, cp = 1t) dx

t a 6Q~Oua x-a
(16)

for the specimen ofFig. I under consideration of its special supports and its thermal loading.
The physical meaning of eqn (16) is, that for elastic systems the change of the strain energy
due to crack extension by fJa and the work required to close the crack by fJa to its original
length have to be of equal values.

Following Ref. [8], eqn (16) can be transformed into an appropriate finite element
representation given by

(17)

where the eSE-net of Fig. 6(a) has been incorporated. To avoid an extra finite element
analysis for the calculation of the unknown nodal point force Fy.;-1 in eqn (17), Rybicki
and Kanninen[8] started from the basic assumption, that for Aa -+ 0 the crack tip nodal
point force Fy.; should be a good approximation for the actually required force Fy.;_ l' This
leads to the following equation

(18)

here referred to as the eSE-Formula of Ist-Order. The results given in Ref. [8] justified the

x

--a-------t---6a----I

Fig. 5. Irwin's crack closure integral.
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Fig. 6. Finite element nets around the crack tip: (a) eSE-net ; (b) LSE·net.

basic assumption and proved the modified crack closure integral method to be a very
straightforward and effective numerical procedure for calculating energy release rates with
crack extension in combination with eSE-nets.

In order to utilize the well-known advantages of higher order finite elements, for
example of the "Linear Strain Elements" (LSE) of Fig. 6(b), eqn (18) can be adapted to
this case in the following straightforward way

) 1 l' 1G1(a = - 1m AFd(a)!1u"j_l(a).t lial2~O Ua ,. J'

(19)

According to Rybicki and Kanninen's basic assumption it has to be considered that in this
LSE-Formula of 1st-Order the crack will only be closed by the amount !1a/2. It has been
shown by Refs [11, 12] that eqn (19) can be applied in fracture analysis with some advantages
compared to eqn (18) if crack tip positions i-I at midside nodes of the LS-Elements (Fig.
6(b)) are avoided, which create interelement incompatibilities in front of the crack tip. But
the detailed analysis by the aid of the global energy method-EN [eqns (11, 12)] and the
analytical accuracy measure [eqns (13-15)] in form of the results in Figs 7 and 8 will show,
that eqn (18) still has to be improved for the use in combination with LS-Elements[I3].

Starting with Fig. 7, the GI-RK-F plot, calculated with eqn (19) and the LSE-net, F, of
Fig. 2(a) differs in the stationary value by 14.8% from the GI-EN-S reference value and
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Fig. 7. Energy release rates calculated with the LSE·Formulae of Ist- and 2nd-Order and the fine
LSE-net, F.
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Fig. 8. Energy release rates calculated with the LSE-Formulae of Ist- and 2nd-Order and the
superfine LSE-net, S.

(20)

the global accuracy meas.ure [eqns (15)] delivers a deviation of Arcl = -18.8%. Figure 8
shows the corresponding results for the LSE-net, S, of Fig. 2(b). Using eqn (19) the
stationary value of the G I-RK-S plot is still 14.8% too low compared with the reference
value and Arcl = -16.4% is a poor result with respect to the superfine net, S.

Because of these insufficient results eqn (19) has been reanalysed and on the basis of
Irwin's crack closure integral and Rybicki and Kanninen's basic assumption the following
LSE-Formula of 2nd-Order has been established by Buchholz

GJ(a) = -7 e~o 1a ~ (Fy,i(a)AuY.i_ 2(a) +Fy .;+ l(a)Auy.i_ I(a)).

Different from eqn (19), in eqn (20) two nodal point forces F,.,;(a) and Fv•i+ lea) at and in
front of the crack tip (positions i and i+ I in Fig. 6(b)) are taken as approximations for the
actually required forces at the positions i-I and i - 2. This approach is based on the
knowledge that these forces are keeping the crack of length a closed along Aa in front of
the actual crack tip, just at the corresponding nodal point positions i - 2 and i-I of the
opened crack. Furthermore, in case of CS-Elements eqn (20) reduces to the CSE-Formula
of 1st-Order [eqn (18)] given and used by Rybicki and Kanninen. Applying eqn (20) with
admissible crack tip positions at corner nodes of the LS-Elements, respectively, this LSE­
Formula of 2nd-Order delivers results with very good accuracy as can be seen in Figs. 7
and 8, respectively. Although eqn (20) works up a very limited amount of crack tip data
for the calculation of the energy release rate G1(a) the GI-BU-F and -S plots in Figs. 7
and 8 nearly completely coincide with the G l-EN-S reference curve, calculated with the
more laborious global energy method, EN. This results in a very good A rcl = -1.4% for
the GI-BU-F plot in Fig. 7 and an excellent A rcl == -0.4% for the GI-BU-S plot in
Fig. 8.

3.2. J-Integral calculations
In addition to the energy release rate calculations described above J-integral values

for the straight central crack were calculated for a number of different crack lengths. The
finite element program ADINA was used in combination with the post processor program
JOTINT[15], which was developed at Brown, Boveri & Cie following the proposals b¥
deLorenzi[7]. Hereby the method of virtual crack extension is applied as introduced by
Hellen[4] and Parks[16]. In the paper of deLorenzi the following expression is derived for
the calculation of the strain energy per unit thickness G*, which is released by a virtual
extension AlJ of the crack tip:

(21)
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where W, (J ij and u, are the strain energy and the components of the stress tensor and the
displacements, respectively, in the volume of integration considered.

G* and J are related by

G* = J ~b. (22)

Equation (21) gives the general three-dimensional relation for G*. In a two-dimensional
case as considered in this paper surface integrals have to be evaluated instead of line
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I

Fig. 9. J-Integral calculation of a crack with crack face loading.
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Fig. 10. Finite element nets of the specimen (one quarter) used for the ADINA calculations of J(a).
Quadrilateral 8-node "Linear Strain Elements" (LSE): (a) fine net, F, 196 elements, 645 nodal

points; (b) superfine net, S, 784 elements, 2465 nodal points.
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Fig. II. Different integration paths for crack length ratio al"'" = 0.5.
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Fig. 12. Variation of J-integral values with dilJcrent integration paths for the superline net. S. and
a/lI' = 0.5.

integrals, which are used in Rice's[5] original formulation. As the integration procedures
included in ADINA can be used for the calculation of volume and surface integrals this is
more convenient to do than to handle with line integrals.

DeLorenzi's formulation does not include thermal stresses and at the present time the
program JOTINT also has no capability to handle thermal stress problems. To get mean­
ingful results in our case, the superposition principle of linear elasticity was applied. The
thermal stresses calculated for the uncracked strip were taken as pressure loading of the
crack sufaces and the calculations were carried out for this problem. Furthermore, as the
program JOTINT does not include crack face loadings, according to Fig. 9 the J-integral
values were evaluated by addition of the two integration paths f l and f 2• The contribution
f l was calculated by means of JOTINT, while the contribution of f 2 was evaluated by
directly applying Rice's formula[5].

Figures lO(a) and (b) show the two finite element nets used for the calculations. In
both cases 8-node linear strain elements were used. Net, F, referred to as fine net according
to the nets for the ASKA-calculations, consists of 196 elements with 645 nodal points. Net,
S, referred to as superfine net, is built up of 784 elements with 2465 nodal points.

Figure II shows the different integration paths used for the J-integral evaluation for
the superfine net and a/II' = 0.5. For the other crack lengths considered similar integration
paths were used with the exception of a/w = 0.0714 and a/w = 0.9286, respectively, where
only path I (for the fine net) and paths I and 2 (for the superfine net) could be evaluated.

Figure 12 shows J-integral values for the different integration paths for a/w = 0.5 and
the superfine structure. As can be seen the path independence of the J-integral is fulfilled
rather well. A summary of the results of the J-integral calculations is given in Table I.

In Fig. 13 the J-integral values are compared with energy release rate results by
Buchholz and Meiners[13] calculated with the global energy method, EN, derived from
energy calculations. The coincidence of the results can be considered as very good, except
for a/w = 0.0714 and a/IV = 0.9286. The deviations in these cases may be explained by the
fact that for these two crack lengths only integration path I or I and 2, respectively, could
be evaluated.

Table I. Results of the i-integral calculations

alII'
Fine net Superfine net

(JINmm- l
)

0.0714
0.2857
0.5000
0.6429
0.9286

2.74
8.65

11.04
11.40
13.04

2.62
8.69

11.04
11.39
12.79
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Fig. 13. Comparison of J-integral values J(a), calculated with ADINA and JOTINT and energy
release rates G(a), calculated with the global energy method. EN and ASKA.

4. CONCLUSIONS

The numerical investigations of this paper have shown that the energy release rate G(a)
can be calculated with very good accuracy by different global or local energy methods, in
combination with standard finite elements of higher order (LSE) and without requiring net
refinements adjacent to the crack tip. The quality of the numerical results has been indicated
by the aid of an analytically based accuracy measure established for this specially supported
and loaded specimen. Besides the simplicity of the procedure the original and the improved
modified crack closure integral method has the advantage to deliver simultaneously the
separated Gla)-values, i = I, II for plane mixed mode problems[8, 17] and furthermore,
that the method can be generalized successfully for the analysis of 3D-fracture problems of
composite materials (thermally loaded curved interface cracks) generating simultaneously
all three fracture modes[18].
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